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On September 1, 1971, unknowingly to most, the
world changed for the fields of behavioral genetics
and circadian clocks. Ronald Konopka, a graduate
student with Seymour Benzer at Caltech, published
a paper (1) that I would argue is the most important
discovery ultimately leading to our current molecular
understanding of the circadian clock in animals. In this
classic paper, Ron and Seymour reported the isolation
of three single-gene mutants in Drosophila that dra-
matically altered circadian rhythms in pupal eclosion
and locomotor activity. One mutant exhibited no
rhythmicity, another had a short 19-h period, and a
third had a long 28-h period. Remarkably, all three mu-
tantsmapped to the same locus on the X chromosome.
They named this gene period.

Seymour Benzer had recently joined the faculty at
Caltech in 1967, after two previously successful ca-
reers in physics andmolecular biology, and spurred on
by Max Delbruck to do something more interesting,
launched his third career in behavioral biology (2–5).
Having done a sabbatical at Caltech with Roger
Sperry, Seymour interacted with Ed Lewis, a giant in
Drosophila genetics who trained with Alfred Sturtevant
(descendent of Thomas Hunt Morgan) (6). Seymour
choseDrosophila as amodel systembecause its nervous
system was intermediate in complexity “between a
single neuron and the human brain” yet exhibited
complex behavior and was amenable to genetic
analysis (7). That same year, Seymour published his
first paper (8) using mutagenesis and countercurrent
technology to isolate phototaxis mutants in Drosophila.

The opening sentence of this paper reads, “Complex as
it is, much of the vast network of cellular functions has
been successfully dissected, on a microscopic scale, by
the use of mutants in which one element is altered at a
time. A similar approach may be fruitful in tackling the
complex structures and events underlying behavior, us-
ing behavioral mutations to indicate modifications of the
nervous system.”

Shortly afterward, Ron Konopka joined Seymour’s
laboratory as his first graduate student at Caltech (9, 10)
(Fig. 1). Ron was previously interested in circadian
rhythms, and with the tutelage of Ed Lewis, decided to
do a screen for ethyl methanesulfonate–induced mu-
tants on the X chromosome. Using the timing of eclo-
sion of flies as a screen, Ron found an arrhythmic
mutant in the first 200 lines that he screened. This
led to what is known as Konopka’s First Law: “If you
don’t find it among the first 200, quit” (9, 11). He went
on to screen 1,900 lines and found two more mutants:
the short period and long period mutants. Ron then
went on to map the mutants using recombination and
found them to be left of the white locus on X. To test
for whether the three mutants were alleles of the same
gene, he performed complementation tests for all com-
binations of the three mutants with each other and with
wild type. None of the complementation tests produced
a normal rhythm, suggesting the three mutants were
alleles of the same gene. The arrhythmic and long mu-
tants were recessive to wild type, and the short period
mutant was semidominant. Crossing either the short or
the long mutant over the arrhythmic mutant showed that
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the arrhythmic mutant behaved as a null. Complementation tests with
deficiencies of the X chromosome localized the gene within bands
3A6 to 3C2. Thus, Konopka and Benzer were able to infer that
the arrhythmic mutant was a null mutant and that the short and
long mutants were likely missense mutations. This prediction
was confirmed many years later when the mutant alleles were
sequenced (12, 13).

At the time that Konopka and Benzer published their paper,
there was great skepticism that something as complex as behavior
could be strongly influenced by single genes (4, 11). When Sey-
mour reported the results to Max Delbruck, he told him it was
impossible. To which Seymour responded, “But, Max, we found
the gene, we’ve already done it!” Still Delbruck insisted that it was
impossible and told Seymour, “I don’t believe a word of it” (4, 11).

The Konopka and Benzer paper (1) completely refuted the
notion that single genes could not influence behavior. Not only
did the three period mutants affect the timing of eclosion, a devel-
opmental event, but the mutants affected the circadian locomotor
rhythms of individual adult flies in the same way. Importantly, the
phenotypes of the three alleles were so different: One could speed
up the clock, one could slow it down, and one led to the abolition of
circadian rhythms. These features emphasize the importance of
choosing the best phenotypes to screen: For circadian rhythms,
the period or rate of the underlying oscillator is most informative
because there are few ways to change the rate of the oscillator in
a nonspecific or irrelevant manner (14, 15).

This robust example of a single gene affecting circadian
behavior reinforced Benzer’s grand scheme that complex behavior

could be dissected byMendelian genetics and led to a groundswell
of additional mutants in flies (7, 11). The Shaker mutant defined
the first potassium channel at the molecular level (16, 17). The
dunce mutant provided an entrée into the genetics of learning
and memory (18, 19). The sevenless mutant defined a develop-
mental pathway for photoreceptor determination (20–22). The
bubblegum andmethuselahmutants uncovered genes affecting
neurodegeneration and life span (23, 24).

Despite the remarkable phenotypes of the period mutants,
progress on the molecular nature of the period gene was slow.
This required the development of recombinant DNA technology
in the late 1970s and early 1980s in order to clone the gene. Thus,
it would be another 13 y before the period gene would be iden-
tified at the molecular level independently by the laboratories of
Jeff Hall and Michael Rosbash at Brandeis (25, 26) and by Mike
Young at Rockefeller (27, 28). The cloning of per was not very
informative at the time. There were few obvious protein motifs
to infer function and a number of red herrings and dead ends were
reported for the PER protein including its being a proteoglycan or
a gap junction regulator (29–31). These side trips were eventually
self-corrected by the Brandeis and Rockefeller laboratories (32,
33), and the focus reoriented toward gene expression and nuclear
localization. It was shown that PER was actually a nuclear protein
and initial antibody staining suggested that the PERprotein expressed
a circadian rhythm in the CNS and visual system of flies (34). Impor-
tantly, Hardin et al. (35) then showed that the permRNA cycled in the
brain of flies and that the per gene product could feedback on its
own gene expression. This discovery led to the hypothesis of an

Fig. 1. Photograph of Ron Konopka (Left) and Seymour Benzer (Right) taken in October 2000 in Pasadena, California. Photo courtesy of Howard
Hughes Medical Institute, Holiday Lectures on Science, December 2000, “Clockwork Genes: Discoveries in Biological Time.” Reprinted from
ref. 14 by permission of SAGE Publications, Inc. copyright © 2004.
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autoregulatory loop involving PER negative feedback as the
core of the circadian clock mechanism in Drosophila.

The magnitude of the period mutant discovery can measured
in another way: The second core circadian gene to be discovered,
timeless, did not occur until 1994, 23 y after per (36). Soon, it
became clear that PER and TIM both cycled and formed a heter-
odimeric complex (37–40). The loop was finally closed with the
discovery of the upstream regulators of per and tim by the tran-
scription factors, CLOCK and CYCLE in 1998 (41–43).

From a personal perspective, the Konopka and Benzer (1971)
paper was life changing for me. It was the exemplar for how to
find circadian clock genes, and during midcareer, I switched from
neuroscience to genetics because it became clear that in order to
find clock genes in mammals, forward genetics was the only
feasible path for discovering something that we knew nothing
about (44). In 1994, we reported the isolation of the Clockmutant
mouse, which was found in anN-ethyl-N-nitrosourea mutagenesis
phenotypic screen for circadian locomotor rhythms (45). This mu-
tant had an extreme circadian phenotype: a 28-h period and an
eventual loss of sustained circadian rhythms in constant condi-
tions. The mutant was semidominant and mapped to chromo-
some 5. Three years later, my laboratory was able to identify the
gene using positional cloning and transgenic rescue approaches
after 30 person years of effort (46, 47). The CLOCK protein was
a bHLH–PAS transcription factor, and it acted in concert with
another bHLH–PAS protein, BMAL1. Incredibly at the time, we

found that CLOCK–BMAL1 could transactivate the per gene from
Drosophila as well as the mouse Per1 gene (48). Thus, CLOCK–
BMAL1 linked directly to the original period gene and formed
the basis for the previously missing activators of per. Identification
of the Drosophila orthologs of Clock and Bmal1, dClock, and cycle
(dBmal1), completed the description of the conserved core mecha-
nism of the circadian clock in Drosophila and mammals (49). In the
following two decades, remarkable progress was made in under-
standing the mechanism of circadian clocks in animals (50) and their
relevance to health and medicine (51). Circadian clock proteins have
direct molecular interactions with metabolism (52), immune function
(53), cancer (54, 55), and neurodegeneration (56).

In 2017, Jeff Hall, Michael Rosbash, and Michael Young were
awarded the Nobel Prize in Physiology or Medicine “for their dis-
coveries of molecular mechanisms controlling the circadian
rhythm” (33, 57). This would not have been possible without the
truly groundbreaking paper by Konopka and Benzer (1) and the
discovery of period. Sadly, neither Seymour nor Ron would witness
the fruits of this paper leading to the Nobel Prize since they passed
away in 2007 (2–4) and 2015 (9, 10), respectively. We owe a great
debt to these two pioneering scientists who led the way in opening
up the many black boxes underlying complex behavior.

See Movies S1 and S2 for interviews of Ronald Konopka and
Seymour Benzer.

Data Availability. There are no data underlying this work.
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